Silica Colloid Ordering in a Dynamic Sedimentary Environment

نویسندگان

  • Moritz Liesegang
  • Ralf Milke
چکیده

The formation of ordered particle arrays plays an essential role in nanotechnology, biological systems, and inorganic photonic structures in the geosphere. Here, we show how ordered arrays of amorphous silica spheres form in deeply weathered lithologies of the Great Artesian Basin (central Australia). Our multi-method approach, using optical and scanning electron microscopy, X-ray microdiffraction, Raman spectroscopy, and electron probe microanalysis, reveals that particle morphologies trace the flow of opal-forming colloidal suspensions and document synand post-depositional deformation. The micromorphology of amorphous silica pseudomorphs suggests that the volume-preserving replacement of non-silicate minerals proceeds via an interface-coupled dissolution precipitation process. We conclude that colloid flow and post-depositional shearing create but also destroy natural photonic crystals. Contrary to previous studies, our results indicate that purely gravitational settling/ordering is the exception rather than the rule during the formation of three-dimensional periodic sphere arrays in the highly dynamic colloidal suspensions of chemically weathered clastic sediments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of applying colloidal nano Silica in improving sand-silt mixtures

Passive method is a new procedure in stabilizing loose soils. This methodology is a type of interlocking soil particles structures. In order to optimum improve in this method, it is necessary to achieve proper penetration length and increase the shear strength of parameters. Researches have shown an increased resistance to liquefaction and decreased permeability due to colloidal Nano silica inj...

متن کامل

Diverging electrophoretic and dynamic mobility of model silica colloids at low ionic strength in ethanol.

Electroacoustics and laser Doppler electrophoresis were employed to measure the mobility of surface-modified silica colloids in ethanol as a function of the ionic strength. Sufficiently low volume fractions were chosen to exclude effects of interparticle interactions. At high ionic strength, the electrophoretic mobility μ(e) is equal to the (electroacoustic) dynamic mobility μ(d) at 3.3 MHz. Ho...

متن کامل

Experimental study of applying colloidal nano Silica in improving sand-silt mixtures

Passive method is a new procedure in stabilizing loose soils. This methodology is a type of interlocking soil particles structures. In order to optimum improve in this method, it is necessary to achieve proper penetration length and increase the shear strength of parameters. Researches have shown an increased resistance to liquefaction and decreased permeability due to colloidal Nano silica inj...

متن کامل

Charge stabilized crystalline colloidal arrays as templates for fabrication of non-close-packed inverted photonic crystals.

We developed a straightforward method to form non-close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense silica to form a highly ordered silica impregnat...

متن کامل

Synthesis and Characterization of Colloidal Nanosilica via an Ultrasound Assisted Route Based on Alkali Leaching of Silica Fume

Colloidal nanosilica is currently being produced by various methods which are mainly high energy intensive and/or not environmentally friendly. It is therefore essential to develop new energy-efficient and environmentally friendly technologies. This paper introduces a new ultrasound assisted route based on alkali leaching of silica fume for synthesis of colloidal silica nanoparticles. The ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018